The potential-energy tensors for subsystems. A special case of two homogeneous ellipsoids bounded by a heterogeneous homeoid

2002 ◽  
Vol 323 (1) ◽  
pp. 13-19
Author(s):  
R. Caimmi ◽  
L. Secco
2015 ◽  
Vol 82 (8) ◽  
Author(s):  
Brandon H. Hanna ◽  
Spencer P. Magleby ◽  
Robert J. Lang ◽  
Larry L. Howell

The origami waterbomb base (WB) is a single-vertex bistable mechanism that can be generalized to accommodate various geometric, kinematic, and kinetic needs. The traditional WB consists of a square sheet that has four mountain folds alternating with five valley folds (eight folds total) around the vertex in the center of the sheet. This special case mechanism can be generalized to create two classes of waterbomb-base-type mechanisms that allow greater flexibility for potential application. The generalized WB maintains the pattern of alternating mountain and valley folds around a central vertex but it is not restricted to eight total folds. The split-fold waterbomb base (SFWB) is made by splitting each fold of a general WB into two “half folds” of the same variety as the parent fold. This study develops kinematic, potential energy, and force–deflection models for the rigid-foldable, developable, symmetric cases of the generalized WB and the SFWB, and investigates the relative effects of numbers of folds and split-fold panel size, on device behavior. The effect of selected key parameters is evaluated, and equations are provided to enable the exploration of other important parameters that may be of interest in the design and analysis of specific mechanisms. The similarities and differences between the two general forms are discussed, including tunability of the bistable and force–deflection behavior of each.


1986 ◽  
Vol 78 ◽  
Author(s):  
John C. Lambropoulos

ABSTRACTThe theory of internal variables is used in order to develop multiaxial constitutive laws for ceramics undergoing martensitic stress-assisted transformation, such as partially stabilized zirconia or A12O3-ZrO2. The internal variable is identified with the volume concentration of transformed particles, and we assume that transformation occurs so that the change in potential energy due to the transformation is maximized. When the rate of transformation depends on the applied stresses only through the corresponding change in potential energy, it is shown that the inelastic strain rates are along the normal of a stress function in stress space. The constitutive law depends on all three stress invariants. We further discuss specific stress environments such as crack tip fields, the special case of homogeneous transforming particle distribution, and conditions under which normality is not obeyed.


2018 ◽  
Vol 41 ◽  
Author(s):  
Daniel Crimston ◽  
Matthew J. Hornsey

AbstractAs a general theory of extreme self-sacrifice, Whitehouse's article misses one relevant dimension: people's willingness to fight and die in support of entities not bound by biological markers or ancestral kinship (allyship). We discuss research on moral expansiveness, which highlights individuals’ capacity to self-sacrifice for targets that lie outside traditional in-group markers, including racial out-groups, animals, and the natural environment.


Author(s):  
Dr. G. Kaemof

A mixture of polycarbonate (PC) and styrene-acrylonitrile-copolymer (SAN) represents a very good example for the efficiency of electron microscopic investigations concerning the determination of optimum production procedures for high grade product properties.The following parameters have been varied:components of charge (PC : SAN 50 : 50, 60 : 40, 70 : 30), kind of compounding machine (single screw extruder, twin screw extruder, discontinuous kneader), mass-temperature (lowest and highest possible temperature).The transmission electron microscopic investigations (TEM) were carried out on ultra thin sections, the PC-phase of which was selectively etched by triethylamine.The phase transition (matrix to disperse phase) does not occur - as might be expected - at a PC to SAN ratio of 50 : 50, but at a ratio of 65 : 35. Our results show that the matrix is preferably formed by the components with the lower melting viscosity (in this special case SAN), even at concentrations of less than 50 %.


2016 ◽  
Vol 32 (3) ◽  
pp. 204-214 ◽  
Author(s):  
Emilie Lacot ◽  
Mohammad H. Afzali ◽  
Stéphane Vautier

Abstract. Test validation based on usual statistical analyses is paradoxical, as, from a falsificationist perspective, they do not test that test data are ordinal measurements, and, from the ethical perspective, they do not justify the use of test scores. This paper (i) proposes some basic definitions, where measurement is a special case of scientific explanation; starting from the examples of memory accuracy and suicidality as scored by two widely used clinical tests/questionnaires. Moreover, it shows (ii) how to elicit the logic of the observable test events underlying the test scores, and (iii) how the measurability of the target theoretical quantities – memory accuracy and suicidality – can and should be tested at the respondent scale as opposed to the scale of aggregates of respondents. (iv) Criterion-related validity is revisited to stress that invoking the explanative power of test data should draw attention on counterexamples instead of statistical summarization. (v) Finally, it is argued that the justification of the use of test scores in specific settings should be part of the test validation task, because, as tests specialists, psychologists are responsible for proposing their tests for social uses.


Sign in / Sign up

Export Citation Format

Share Document